Ubah25 persen menjadi bentuk pecahan. Pada langkah pertama, bagi 25% dengan 100: 25/100. Sekarang kita akan mengurangi pecahan dengan membaginya dengan GFC dari angka atas dan bawah. GFC = 5. 25 dibagi 5/100 dibagi 5 = 5/20. Pada pengurangan lebih lanjut: 5/100 = 1/4. 25/100 adalah pecahan dari 25%. 25% = 1/4. Akardari 64 adalah 32

Akar dari 8 adalah 4

alternatives

Akar dari 16 adalah 8

Akar dari 49 adalah 7

Akar dari 64 adalah 32

Bentuk Sederhana dari Akar 288 adalah.. answer choices . 8 Akar 2. 10 Akar 2. 12 Akar 2. 14 Akar 2

8 Akar 2

alternatives 44 Manyajikan bentuk-bentuk kebersatuan dalam keberagaman di lingkungan sekitar. 4.2 Menggunakan bilangan cacah dan pecahan sederhana (seperti 1/2, 1/3 , dan 1/4 ) yang disajikan pada garis bilangan. Kunci Jawaban Buku Siswa Kelas 6 Tema 1 Subtema 2 Halaman 63, 64, 66, 71, 72 Vay Tiền Nhanh. 1. Bentuk sederhana dari 23 x 223 adalah a. 27 b. 28 c. 512 d. 212 e. 218 Jawab c. 512 Pembahasan 23 x 223 = 23 x 26 = 8 x 64 = 512 a 2. Nilai dari 3 2 b b 1 2 a b 2/3 1/2 a 1 2 4 3 adalah √ ab b. b √ a a. c. ab d. a √b e. a2b3 √ ab Jawab a. Pembahasan 3 2 a b 1 2 1 b2 a b 2/3 1/2 a 4 3 = a3/2b-1/2-1a2/3b1/2 b1/2a-4/3 3 2 4 βˆ’ + + 2 3 3 =a 1 1 1 + βˆ’ 2 2 b2 = a1/2b1/2 = 3. nilai √ ab 4βˆ’2 x =4 y 0 8 x 2 y βˆ’4 xβˆ’2 y βˆ’3 xβˆ’1 y 2 a. 2x-1y3 adalah b. 2xy3 c. Β½x-1y2 d. Β½xy-3 e. x-1y-3 Jawab d. Β½xy-3 Pembahasan 4βˆ’2 x =4 y 0 8 x 2 y βˆ’4 xβˆ’2 y βˆ’3 xβˆ’1 y 2 = 2-4x-2y323x3y-6 = 2-4 + 3 x-2 + 3y3 – 5 = 2-1xy-3 = Β½xy-3 4. Nilai dari 2-4 + 1 2βˆ’2 adalah a. 41/16 b. 2 c. 3 d. 41/8 e. 4 Jawaban a. 41/16 Pembahasan 2 + -4 1 2βˆ’2 1 1 2 1 +2 = + 4=4 16 16 = 16 5. Jika x = 32dan y= 27, maka nilai 5x1/53y1/2 Adalah a. 2/3 b. 5/2 c. 3 d. 4 e. 5 Jawab b5/2 Pembahasan x = 32, y = 27 5x-1/5 x 3y-1/3 = 532-1/5 x 333-1/3 = 525-1/5 x 333-1/3 = 5/2 x 1 = 5/2 3 6. Bentuk βˆ’1 x βˆ’y 2 xβˆ’1 + yβˆ’2 dapat disederhanakan tanpa eksponen negatif menjadi y yβˆ’x 3 a. x 2 2 y 2 βˆ’x y y +x 3 b. x 2 2 y 2 +x c. y y +x 3 x 2 2 y 2 βˆ’x y yβˆ’x 3 d. x 2 2 y 2 +x y yβˆ’x 3 e. y 2 2 x 2 +x y yβˆ’x 3 Jawab d. x 2 2 y 2 +x Pembahasan 3 βˆ’1 x βˆ’y 2 xβˆ’1 + yβˆ’2 = 7. Bentuk a. p+q pq b. pq q+ p 1 1 y βˆ’x3 βˆ’ y y βˆ’x3 x3 y x3 y yβˆ’x 3 xy 2 = = 3 x = 2 2 2 1 x y 2 y + x x2 2 y2 + x + 2 2y +x x y xy 2 1 pβˆ’1 +qβˆ’1 senilai dengan c. P+q d. pβˆ’q p+q e. pq qβˆ’p pq q+ p Jawab b. Pembahasan 1 pq = q+ p q+ p pq 1 pβˆ’1 +qβˆ’1 = 8. Jika diketahui a = 3 + √6 dan b = 3 - √6 maka a2 + b2 – 6ab adalah √6 3 - a. 3 b. 6 c. 9 d. 12 e. 30 Jawab d. 12 Pembahasan a2 + b2 – 6ab = 3 + =9+6 √6 √6 2 + 3 - √6 +6+9-6 2 – 63 + √6 √6 + 6 – 69 – 6 =12 9. Hasil kali dari 3 √ 15 b. 42 + √ 15 c. 18 + 9 √ 15 d. 42 - 8 √ 15 a. 60 - 6 √5 -2 √3 √ 80 + √ 27 adalah √ 15 e. 42 + 9 Jawab b. 42 + √ 15 Pembahasan √ 5 - 2 √ 3 √ 80 + √ 27 = 3 √ 5 - 2 √ 3 4 √ 5 + 3 √ 5 = 60 – 8 √ 15 + 9 √ 15 - 18 = 42 + √ 15 √ 243 - 3 √ 3 + 2 √ 48 = 10. a. 15 √ 3 b. 14 √ 3 c. 12 √ 3 d. 8 √ 3 e. 7 √ 3 Jawab b. 14 √ 3 3 Pembahasan √ 243 11. √ 3 + 2 √ 48 = 9 √ 3 - 3 √ 3 + 8 √ 3 = 14 √ 3 Bentuk dari √ 21+8 √ 3 dapat disederhanakan menjadi -3 a. √ 14 + √7 b. √ 12 + √6 c. 3 + d. 16 + e. 4 + √6 √5 √5 √5 Jawab e. 4 + Pembahasan √ 21+8 √3 = √ 21+2 √ 80 = √ 16+5+2 √ = √ 16 + √ 5 = 4 + √5 12. Nilai dari √5 a. 3 √ 15 b. d. -3 e. 3 √ 125 3 √3 +6 √5 √5 adalah - 132 - 44 √5 c. -3 √ 12 - √5 √5 + 44 + 132 + 44 Jawab c. -3 √5 + 44 3 √3 Pembahasan √ 12 - √ 125 +6 √ 3 - 5 √ 5 3 √ 3 + 6 √ 5 = 2 √ 3 3 √ 3 + 6 √ 5 - 5 √ 5 3 √ 3 = + 12. √ 15 - 15. √ 15 - = 18 - 3 √ 15 - 150 = -3 √ 15 - 132 = -3 √ 15 + 44 = 2 +6 √5 13. 4 Bentuk √8βˆ’2 √15 senilai dengan √5 a. 2 √5 b. √3 + √5 c. Β½ √3 +2 + √3 √5 +2 √ 8+2 √15 d. 4 √ 8+2 √15 e. Jawab a. 2 √3 Pembahasan 4 √8βˆ’2 √15 = 4 5+ 3 4 √ 5+ √ 3 .√ √ = =2 √ 5+ 2 √ 3 5βˆ’3 √√ 5βˆ’ √3 √ 5+√3 = 14. 4 √√ 5βˆ’ √3 √ 2 , nilai dari x2 – 13/4 . x2 - 11/4 adalah Untuk x = a. -4 b. -2 c. 1 d. 4 e. 16 Jawab c. 1 Pembahasan √2 x= β†’ x2 – 13/4 . x2 - 11/4 3 4 = [ √ 2 βˆ’1 ] . [ √2 βˆ’1 ] = [2 βˆ’1] .[ 2 βˆ’1] 2 =1 1 2 3 4 2 1 2 1 4 1 4 15. Diketahui x + x-1 = 7. Nilai dari √ x+ 1 √x adalah √5 a. b. 3 √ 11 c. d. 5 e. 9 Jawab b. 3 Pembahasan Misal √ x+ 1 √x = c kuadratkan kedua ruasnya 1 2 2 =c √ x+ √x 1 x = c2 x+2+ x + x-1 = 7, maka c2 – 2 = 7 c2 = 9 16. β†’ c=3 11 490 Nilai dari log 55 + log 297 - 2log 27 a. Log 297 23 b. Log 297 11 c. Log 297 3 11 d. Log e. 11 27 3 Jawab d. log 11 Pembahasan 7 9 - log 2 adalah 11 490 log 55 + log 297 - 2log = log a 17. 7 9 - log 2 11 490 98 . 55 297 297 3 =log =log 2 98 11 7 .2 81 9 1 1 1 log . b log 2 . c log 3 b c a = a. – 6 b. 6 c. – 16 d. 16 βˆ’ e. 1 6 Jawab a. – 6 Pembahasan a 1 1 1 log . b log 2 . c log 3 b c a = -1. alog b. -2. blog c. -3. clog a =-6 18. Nilai x yang memenuhi persamaan 2log adalah a. 5 b. 4 c. 3 d. 2 e. 1 Jawab d. 2 Pembahasan 2 log √6 - Β½. 2log 3 = 4log x 2 log 61/2 – Β½. 2 log 21/2 = 4log x Β½ = 4log x 2 log 3 = 4log x √6 - Β½. 2log 3 = 4log x x=2 19. Jika a = 6log 5 dan b = 5log 4, maka 4log 0,24 = a. aβˆ’2 ab b. a+2 ab c. 2 a+ 1 ab d. 1βˆ’2 a ab e. 2 a+ 1 2 ab 1βˆ’2 a ab Jawab d. Pembahasan 6 log 5 = a 5 log 4 = b β‡’ 5 5 4 log 0,24 = 5 log 6 = 1 a log 0,24 log 4 6 25 5 = log 4 5 log 5 5 log 6βˆ’ log5 5 = log 4 20. 2 = 1 βˆ’2 a b = 1βˆ’2 a ab Diketahui log 2 = p, log 3 = q, dan log 5 = r. Harga log dapat dinyatakan dalam bentuk p, q, dan r yaitu a. p + q + r b. p + 2q + 3r c. 2p + 3q + 3r d. 2p + q + 3r e. 3p + q + 2r Jawab d. 2p + q + 3r Pembahasan Log 2 = p. log 3 = q, log 5 = r Log = log = log 22 + log 3 + log 53 = 2p + q + 3r SOAL ESSAY BENTUK PANGKAT, BENTUK AKAR, DAN LOGARITMA 3 βˆ’ 6 2 1. Tentukan nilai dari 7x √ y5 5 4 βˆ’ x βˆ’6 y x Untuk x = 4 dan y = 27. Pembahasan 3 βˆ’ 6 2 7x √ y5 5 4 1 βˆ’ 3 x βˆ’6 y x 1 2 βˆ’ = 5 1 2 3 5 1 2 2 x βˆ’ 6 √3 y = 5 3 7 √ x . √ y 2 5 2 = √ 4 βˆ’ 3 6 √ 27 5 = 5 6 5 7x y 3 2 7 x . y . x2 βˆ’2 7 . 2 . √3 √ 2 5 βˆ’ 6 3 √3 = 4 √ 2βˆ’2 126 √3 4 √ 2+2 x 4 2βˆ’2 4 √ 2+2 √ = 504 √ 6+252 √3 = 32βˆ’4 504 √ 6+252 √3 = 28 1 3 x 4 βˆ’6 y βˆ’ 1 3 βˆ’2 √6 = 18 +9 √3 =9 √3 2 √ 2 + 1 √ 8 x βˆ’4 x+3=321 2 2. Penyelesaian dari persamaan xβˆ’1 adalah p dan q dengan p β‰₯ q. Tentukan nilai p + 6q. Pembahasan √ 8 x βˆ’4 x+3=321 2 xβˆ’1 √ 23 1 x2 βˆ’4 x +3 = 5 xβˆ’1 2 √ 23 x βˆ’12 x +9= 2 1 2 5 xβˆ’5 2 3 x 2 βˆ’12 x+9 2 =2 βˆ’5 x+5 2 3 x βˆ’12 x +9 =βˆ’5 x+5 2 3x2 – 12x + 9 = - 10x + 10 3x2 – 2x – 1 = 0 3x + 1x – 1 = 0 1 1 X = - 3 atau x = 1, maka p = 1 dan q = - 3 Nilai p + 6q = 1 + 6. 1 3 βˆ’ =1–2=-1 3. Rasionalkan bentuk penyebut bentuk Pembahasan √7+ √5+ √3 √7+ √5βˆ’βˆš 3 √7+ √5+ √3 . √ 7+√ 5+√ 3 √7+ √5βˆ’βˆš 3 √ 7+√ 5+√ 3 2 √7+ √5+ √3 √ 7+√ 5 2 βˆ’3 √7+ √5+ √3 √7+ √5βˆ’βˆš 3 2 √7+ √5+ √3 9βˆ’2 √ 35 . 9+2 √36 9βˆ’2 √ 35 2 √ 7+ √5+ √ 3 . 9βˆ’2 √ 35 βˆ’59 4. Tentukan nilai x yang memenuhi persamaan √8 Β½ log 8 + log 32 – 2log Β½ = 2log x. Pembahasan Β½ log 8 + Β½log 32 – 2log -3 + -5 - √8 = 2log x 3 2 = 2log x 19 βˆ’ 2 = 2log x βˆ’ 19 2 x= 2 x= 1 512 √2 5. Diketahui 2log 2x + 3.25log 8 = 3. Tentukan nilai x yang memenuhi. Pembahasan 2 log 2x + 3.25log 8 = 3 3 2 5 log 2. 2log 2x + 3 = 3 .5 log 2x + 3 = 2 2x + 3 = 25 2x = 22 x = 11 RARafi A25 November 2021 0502Pertanyaanbentuk sederhana dari 3Γ’Λ†Ε‘2 + 2Γ’Λ†Ε‘3 3Γ’Λ†Ε‘2 - 2Γ’Λ†Ε‘3 adalah C. 12Γ’Λ†Ε‘2 D. 30 E. 6 701Jawaban terverifikasiJJIngat bahwa a+ba-b = a²-b² Jadi, 3Γ’Λ†Ε‘2 + 2Γ’Λ†Ε‘3 3Γ’Λ†Ε‘2 - 2Γ’Λ†Ε‘3 = 3Γ’Λ†Ε‘2² - 2Γ’Λ†Ε‘3² = 18 - 12 = 6 .... EYuk, beri rating untuk berterima kasih pada penjawab soal!Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!Mau pemahaman lebih dalam untuk soal ini?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!

bentuk sederhana dari 64 2 3